Study Guide

CHAPTER 12

Section 1: DNA: The Genetic Material

cytosine

In your textbook, read about nucleotides.

Label the diagrams of DNA nucleotides and bases. Use these choices:

cytosine	guanine	phosphate	purine	pyrimidine
1			Nucleotide Structi	ure
2			1.	NH ₂
3			P 0-	N C
4		<u>~</u>	CH ₂	NH ₂ HC N
5			H H	A N Aden
6.			он н Э Е	н Base
			2.	

sugar

Adenine

double helix

__ Bases

6. Thymine

In your textbook, read about DNA structure.

adenine (A)

Write the term or phrase that best completes each statement. Use these choices:

chromosome

	double-ring nucleotides	genetic material purine	nitrogenous bases single-ring	nucleic acid
7.	7, guanine (G), cytosine (C), and thymine (T)			
	are the four		in DNA.	
8.	In DNA,guanine (G).		_ always forms hydrogen bo	nds with
9.	The sequence of of an organism.		carries the genetic	information
10.	Chargaff's data states to equals the number of J		DNA.	bases
11.	The twisted ladder sha	pe of DNA is called a	1	
12.	DNA is the		of all organisms.	
13.	The pyrimidine bases	have a	structu	ire.
14.	The purine bases have	a	structure.	
15.	DNA and RNA are the	e two	found in	n living cells.
16.	DNA supercoils to ma	ke up the structure k	nown as a	

Study Guide

CHAPTER 12

Section 2: Replication of DNA

In your textbook, read about semiconservative replication.

Match the description in Column A with the term in Column B.

Column A

- 1. unwinds in multiple areas as DNA is replicated
- **2.** parental strands separate and serve as templates for new strands of DNA
- **3.** the DNA of prokaryotes
 - **4.** keep the strands of DNA separate during replication
- **5.** elongates as DNA unwinds and is replicated continuously
- **_____ 6.** unwinds the double helix

Column B

- **A.** semiconservative replication
- **B.** DNA helicase
- **C.** single-stranded binding proteins
- **D.** leading strand
- E. eukaryotic DNA
- F. circular DNA

In your textbook, read about base pairing.

Label the diagram showing DNA replication. Use these choices:

DNA ligase	DNA polymerase	leading strand	Okazaki fragments	parental DNA
7		10		
8		_ 11		
9		12		

Study Guide

CHAPTER 12

Section 3: DNA, RNA, and Protein

In your textbook, read about the central dogma of biology.

For each statement below, write true or false.

1. The central dogma of biology, or the mechanism of reading and expressing genes in all living things, can be expressed as follows: DNA→RNA→proteins.

2. The process of the synthesis of mRNA from DNA is called translation.

In your textbook, read about the code.

Refer to the figure. Respond to each statement.

3. Express the following sequence of DNA nucleotides as complimentary mRNA codons.

TACCGATTAACAACT

- **4. Write** the specific amino acid or code that each mRNA codon from statement 3 above represents.
- **5. Identify** the start and stop mRNA codons.

First Base	Second Base				
Dase	U	С	Α	G	Base
	UUU phenylalanine	UCU serine	UAU tyrosine	UGU cysteine	U
U	UUC phenylalanine	UCC serine	UAC tyrosine	UGC cysteine	С
U	UUA leucine	UCA serine	UAA stop	UGA stop	Α
	UUG leucine	UCG serine	UAG stop	UGG tryptophan	G
	CUU leucine	CCU proline	CAU histidine	CGU arginine	U
С	CUC leucine	CCC proline	CAC histidine	CGC arginine	С
•	CUA leucine	CCA proline	CAA glutamine	CGA arginine	Α
	CUG leucine	CCG proline	CAG glutamine	CGG arginine	G
Α	AUU isoleucine	ACU threonine	AAU asparagine	AGU serine	U
	AUC isoleucine	ACC threonine	AAC asparagine	AGC serine	С
A	AUA isoleucine	ACA threonine	AAA lysine	AGA arginine	Α
	AUG (start) methionine	ACG threonine	AAG lysine	AGG arginine	G
	GUU valine	GCU alanine	GAU aspartate	GGU glycine	U
G	GUC valine	GCC alanine	GAC aspartate	GGC glycine	С
u	GUA valine	GCA alanine	GAA glutamate	GGA glycine	Α
	GUG valine	GCG alanine	GAG glutamate	GGG glycine	G

In your textbook, read about translation and the role of the ribosome.

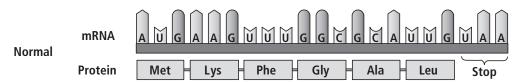
Use each of the terms below only once to complete the passage.

anticodon	, r		•	
ribosome	start codon	translation	tRNA	
Once the (6)	is syn	thesized, it leaves the nucl	eus and	
enters the (7)	The	5' end of the mRNA conr	nects to the	
(8)	, where the code is read and translated to make a(n)			
(9)	in a process cal	led (10)	In	
translation, (11)	int	terprets the mRNA codon	sequence. Once the mRNA	
is associated with the ribo	osome, a tRNA with the (12) _		CAU will bind to	
the mRNA (13)	AT	IG		

Study Guide

CHAPTER 12

Section 4: Gene Regulation and Mutations


In your textbook, read about prokaryote and eukaryote gene regulation.

If the statement is true, write true. If the statement is false, replace the italicized term or phrase to make it true.

- **1.** *Gene regulation* is the ability of an organism to control which genes are transcribed.
- **2.** *A chromosome* contains the genes for the proteins needed for a specific metabolic pathway.
- **3**. An operator is a segment of DNA that acts as an on/off switch for *translation*.
- **4.** *Eukaryotes* can control gene expression using transcription factors.
- **5.** Hox genes play an important role in determining the *gender* of an organism.

In your textbook, read about mutations.

Refer to the figure below. Respond to the following statement.

6. Record the mRNA codon sequence that would result from a substitution mutation of A instead of G in the amino acid alanine (Ala) in the above protein.

Complete the table by filling in the missing information. Use these choices:

frameshift

substitution

mRNA Sequence	Mutation Sequence	Type of Mutation
7. UGU-CCG-GAA-CGA	UGC-CGG-GAA-CGA	
8. GAA-CGU-AGC-GGU	GAU-CGU-AGC-GGU	
9. UGU-UUC-CCU-UAA	UGU-UCC-CUU-AA*	